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In recent years, online gaming is becoming very popular. In contrast to standalone games, online games tend to 
be large-scale and typically support interactions among users. However, due to the high network latency of the 
Internet, smooth interactions among the users are often difficult. The huge and dynamic geometry data sets also 
make it difficult for some machines, such as handheld devices, to run those games. These constraints have 
stimulated some research interests on online gaming, which may be broadly categorized into two areas:  
technological support and user-perceived visual quality. Technological support concerns the performance issues 
while user-perceived visual quality concerns the presentation quality and accuracy of the game. In this paper, 
we propose a game-on-demand engine that addresses both research areas. The engine distributes game content 
progressively to each client based on the player’s location in the game scene. It comprises a two-level content 
management scheme and a prioritized content delivery scheme to help identify and deliver relevant game 
content at appropriate quality to each client dynamically. To improve the effectiveness of the prioritized content 
delivery scheme, it also includes a synchronization scheme to minimize the location discrepancy of avatars 
(game players). We demonstrate the performance of the proposed engine through numerous experiments. 
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1. INTRODUCTION  
Supporting online gaming is very challenging. One important issue is how to replicate 
relevant game content to client machines, which may not be trivial sometimes. As an 
example, [Second Life] owns a growing set of game content, which is of more than 270 
terabytes at this moment and much of the content is created by users dynamically. It may 
not be straightforward to distribute all of this content by currently available methods, 
such as DVD and Blue-ray. Most computers and handheld devices may even have 
problems storing a small portion of this content. On the other hand, the network latency 
of the Internet causes motion discrepancy among the client machines. Hence, when a 
player moves around in the game scene, other players may not know it until after some 
delay. Such delay affects the visual quality perceived by the game players. 
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Our approach is for the game company to host the entire game scene on game servers. 
Once the client machine of a game player is accepted to the game, a relevant portion of 
the game scene is transmitted to the client so that the game may be started immediately. 
Additional game content will be transmitted to the client machine dynamically in an on-
demand and timely fashion, as the player moves around in the game scene [Li et al. 2004]. 
Our aim here is to maximize the user-perceived visual quality [Gulliver and Ghinea 
2006], which concerns the overall presentation quality and accuracy of the game. A 
critical issue of the geometry streaming approach is how we may efficiently determine 
which part of the game scene, and the amount of geometry data, to be transmitted 
dynamically so that the visual quality can be maximized to support user interactivity. 
However, this can be challenging as different client machines may have different 
rendering and network bandwidth capacities. There are some distributed virtual 
environment (DVE) systems [Falby et al. 1993; Greenhalgh and Benford 1995; Das et al. 
1997] that support similar features. They are usually based on some pre-defined spatial 
information or area of interest (AOI) [Falby et al. 1993; Macedonia et al. 1995] of the 
game objects. Some concurrent works to ours also propose to use some form of geometry 
streaming techniques [Cavagna et al. 2006; Hu 2006]. However, we are not aware of any 
work that considers prioritizing the geometry models for transmission. In this paper, we 
propose a method that would efficiently determine which game objects to send and their 
appropriate qualities for transmission dynamically, based on the available bandwidth. 

On the other hand, as the player (or avatar) moves around in the game scene, its 
position changes continuously. However, due to network latency, there is likely a 
positional discrepancy of the avatar between the client and the server, resulting in view 
discrepancy. This causes two main problems. First, it affects user interaction, as the user 
may be reacting to some outdated information. Second, which is more relevant to our 
work here, it may affect the server in identifying and sending appropriate geometry data 
to the client. Hence, we need a way to minimize view discrepancy, but without causing 
discontinuous movements. We have developed a continuous synchronization scheme to 
improve the consistency of dynamic objects presented to the clients.  

The main contributions of this paper are summarized as follows: 
1. We propose a shadow object reference list to enable fast retrieval of dynamic objects. 
2. To have a fine-grain control on the perceived visual quality, we propose a unified 

data structure for progressive transmission of different types of modeling primitives. 
3. We propose a prioritized content delivery scheme to allow visually important objects 

to be delivered with higher priority, and to adjust their qualities, i.e., the amount of 
game data, to be delivered according to the given network bandwidth, the rendering 
capacity and the available local memory space of the client machines. 

4. We propose a continuous synchronization scheme to minimize the state discrepancy 
between each client machine and the server. 
The main idea of this work is to achieve two related objectives: to decouple scene 

complexity from interactivity (or response time) and to provide a graceful tradeoff 
between visual quality and download time. These objectives are similar to those of 
JPEG, which are to decouple image size from response time and to provide a graceful 
tradeoff between visual quality and download time. 

The rest of this paper is organized as follows. Section 2 gives a survey on related 
work. Section 3 presents the architecture of the game-on-demand engine. Section 4 
introduces our two-level content management scheme, while Section 5 introduces our 
prioritized content delivery scheme. Section 6 describes our continuous synchronization 
scheme. Section 7 presents a number of experiments on our game engine prototype and 
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evaluates the results. Finally, Section 8 concludes the work presented in this paper. 

2. RELATED WORK 
In this section, we provide a survey on relevant work. We look at four areas of work that 
are related to our work: communication architectures, content distribution, motion 
synchronization, and user-perceived visual quality.  

2.1 Communication Architecture 
Communication architecture defines how machines are connected. Common choices 
include client-server, peer-to-peer (P2P) and hybrid models. Many online games, such as 
[Second Life] and [World of Warcraft], adopt the client-server model as it offers better 
security control and data persistency by hosting and distributing game content using 
proprietary servers. Recently, the P2P model [Cavagna et al. 2006; Hu 2006] has been 
explored, in which machines communicate directly with each other for data transmission 
without involving some forms of centralized servers. Technically, the client-server and 
the P2P models are very different in machine connections and task allocation. However, 
for content distribution, given that a suitable content discovery mechanism is in place, 
e.g., [Hu et al. 2004], with the P2P model, the peer (client) machines may act like mini-
game servers to distribute downloaded game content to other peers, despite the fact that 
these “servers” may possess only a limited and dynamic subset of the game content. To 
enhance data persistency of a P2P based game, the hybrid model [Botev et al. 2008], 
which employs separate servers on top of the P2P model to maintain and distribute game 
content, can be considered. Our own opinion is that the client-server architecture provides 
a central control of resources and game states. This is more important for commercial 
games. Although the P2P architecture allows resource sharing, the resources are 
distributed and it is more difficult to impose some centralized resource/object 
management without involving a separate client-server layer. As the main purpose of the 
server process in our game engine is for information distribution, and the operations 
involved in the game engine are designed to be independent of the type of physical 
machine connections, our work does not restrict the choice of communication 
architecture for implementation. 

2.2 On-Demand Content Distribution in DVEs 
Existing 3D distribution methods can be broadly classified into video streaming and 
geometry transmission. In video streaming [Chang and Ger 2002; Pazzi et al. 2008], the 
servers render the scene and stream the rendered videos to the client machines for display. 
This approach is developed with the assumption that some client machines may not be 
powerful enough to render 3D objects. However, such concern is becoming less 
significant, as even mobile phones are now equipped with 3D rendering capability. In 
addition, since VEs are becoming more complex with a lot of objects, and different users 
may have different views of the VE with different quality requirements, rendering images 
for all clients will impose very high workload to the servers. 

In contrast, geometry transmission [Das et al. 1997; Falby et al. 1993; Hagsand 1996; 
Leigh et al. 1996; Saar 1999; Teler and Lischinski 2001; Waters et al. 1997] delivers 
geometric objects to the clients and relies on them to render the received objects. This 
approach is employed in some of the distributed virtual environments (DVEs) [Singhal 
and Zyda 1999] and forms the basis of our game engine. In a typical DVE, although the 
virtual environment (VE) may be very large, a user often visits only a small region of it. 
To save memory space and download time, a DVE system may transmit only the 
geometry of the VE that is visible to the user to the client and then dynamically transmit 
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extra geometry to the client as the user moves around in the VE. Existing DVEs based on 
this approach can be roughly divided into region-based and interest-based categories. 
Systems including DIVE [Hagsand 1996], CALVIN [Leigh et al. 1996], Spline [Waters 
et al. 1997] and VIRTUS [Saar 1999] have adopted the region-based approach. They 
divide the whole VE into a number of pre-defined regions. A user may request to connect 
to any region by downloading the full content of the region before the user starts to work 
within the region. However, as the content of a region may be very large in data size, the 
system may need to pause to download the region content whenever the user switches 
from one region to another. 

The interest-based approach typically uses the area of interest (AOI) [Falby et al. 
1993; Macedonia et al. 1995] to determine object visibility. Only the scene content and 
updates within the AOI of the user need to be transmitted to the clients. Systems which 
have adopted this approach include NPSNET [Falby et al. 1993], MASSIVE [Greenhalgh 
and Benford 1995], and NetEffect [Das et al. 1997]. Although this approach may reduce 
the amount of game content for downloading, existing systems do not provide any 
mechanisms to control or guarantee the visual quality. In addition, it may still suffer from 
a long download time as with the region-based approach; particularly, in high-quality 
games, there may be too many objects inside the AOI or some objects inside the AOI are 
very large in data size. 

To improve the performance of the interest-based approach, [Second Life] constructs 
objects using CSG (constructive solid geometry) primitives and allows a primitive to be 
transmitted with a higher priority if it is a component of multiple visible objects. This 
allows the visible region of the game scene to be built up very quickly. [Cavagna et al. 
2006] represents each object using several levels of detail (LODs). When an object is 
selected for transmission, the lowest LOD will go first, followed by the higher LODs if 
they are requested. This method is simple, but it increases the network bandwidth 
consumption, as more than one LOD of each object may need to be sent. [Hu 2006] 
represents each object as a progressive mesh [Hoppe 1996] for progressive transmission. 
It is similar to [Cavagna et al. 2006] but surpasses it by sending out only one copy of 
each object. All these methods aim at shortening the time for the visible objects to be 
presented to the player. Unfortunately, due to the limited network bandwidth of the 
Internet, it may still be difficult for these methods to ensure that every visible object can 
be sent to the clients fast enough to support interactivity. According to our knowledge, 
none of these systems consider prioritizing objects for transmission. Hence, it is possible 
that less important objects are transmitted before important ones.  

2.3 Synchronization 
As the Internet has relatively high network latency, an online game player may suffer 
from significant delay in receiving state updates from other players as they move around 
in the game scene. For example, in [Final Fantasy Online], a player usually receives 
position updates of other players with almost a second delay. To reduce the effect of such 
delay, some restrictions are imposed on the game. First, players can only attack enemy 
objects, but not each other. Second, the enemy objects are designed to move very little 
while they are under attack. Such game rules significantly limit the type of games that 
can be developed. 

Synchronization techniques have been developed for different applications, including 
distributed systems [Lamport 1978], database systems [Bernstein and Goodman 1981] 
and collaborative editing systems [Sun and Chen 2002]. These systems generally regard 
state updates as discrete events. Hence, they only need to ensure that state updates are 
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presented to the relevant users in the correct order, without the need to consider the exact 
moment when the updates are presented to the users. However, this approach may not 
satisfy the requirements of online games or DVEs [Chim et al. 2003], where events are 
usually continuous [Mauve et al. 2004] and must be presented to the users within an 
accepted period of time in order to maintain the interactivity of the application. 
Unfortunately, it is not trivial to synchronize continuous object states. In addition to the 
network latency problem, there is also the time-space inconsistence problem [Zhou et al. 
2004]. Existing methods mainly use time stamping to work out the “true” state of a 
remote object in online games. However, as time stamps based on the senders’ clocks but 
are typically interpreted based on the receivers’ clocks, there is a need to align the clocks 
of all the machines, e.g., using the Network Time Protocol (NTP) [Mills 1991].  

To address the network latency problem, there are two main approaches: forward 
recovery and backward recovery. For forward recovery, [Unreal Engine] maintains a 
reference simulator at the server for each dynamic object and treats the local copies of the 
dynamic object running on the client machines as proxies. In general, the reference 
simulators and the proxies perform state changes independently. A reference simulator 
may broadcast its state to update all proxies if a critical change occurs. However, there is 
no mechanism to synchronize such update. [Mauve et al. 2004] proposes to delay 
presenting a new event to all participants with a “local-lag” period. Although this method 
is simple, it requires a sufficiently large local-lag in order to enforce synchronization 
among multiple players. In a client-server based game, this method induces a 2-trip 
network delay for every single event, as each event must be sent to and propagated 
through a server. This significantly affects the game interactivity.  

For backward recovery, [Cronin et al. 2002; Mauve et al. 2004] suggest a time warp 
mechanism, which uses a separate buffer to record time-stamped object states during run-
time. Any state inconsistency can be resolved offline as the interactivity constraint does 
not apply there. If a significant game state problem is detected, a rollback operation will 
take place by undoing all incorrect updates and applying the corrected object states stored 
in the buffer. However, this is an undesirable action for many game players. 

2.4 User-Perceived Visual Quality 
The concern on user-perceived quality in distributed multimedia applications has been 
studied at the media, network and content levels [Gulliver and Ghinea 2006]. The media 
level focuses on the quality of individual objects. Typical examples include the quadric 
error metric for progressive meshes [Garland and Heckbert 1997] and the object quality 
metrics devised in [Teler and Lischinski 2001]. Such indicators work fairly well if 
network latency is ignorable. However, it is not the case in the Internet environment, as 
game players may perceive discrepant views of the game scene due to transmission delay. 
In contrast, the network level examines the user-perceived visual quality in the existence 
of network latency. It complements the media level to offer a better visual quality in a 
networked environment. For example, [Pazzi et al. 2008] proposes a scheduling 
mechanism to allow the rendered videos to be streamed to the clients by observing the 
network level quality requirement. As another example, our earlier work on DVE caching 
and pre-fetching [Chan et al. 2005] observes such a quality requirement and uses mouse-
driven motion prediction to assist geometry transmission. Finally, the content level 
concerns the overall presentation quality of the application, which corresponds to the 
visual quality and accuracy of the output images in the case of online gaming. This is the 
prime indicator to measure how good a game is perceived by the game players. Our 
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proposed content distribution and synchronization methods form an integrated solution to 
address these quality requirements.  

3. THE ARCHITECTURE OF THE GAME-ON-DEMAND ENGINE 
The game-on-demand engine adopts the client-server architecture to support progressive 
geometry delivery and synchronization. The server(s) maintains the game scene and 
handles the interactions among the clients (or game players) and the game objects. It also 
determines and schedules the required content at appropriate details for delivery to the 
clients. Figure 1 shows the architecture of the game-on-demand engine. Note that if the 
peer-to-peer model [Cavagna et al. 2006; Hu 2006] is employed here, a peer selection 
mechanism [Hu 2006] will need to be employed.  

In summary, the server module has 6 components. The Server Manager coordinates 
all components at the server. It processes all interactions among game objects and sends 
updates to the clients. It also communicates with the model manager on the state of each 
game client. The Model Manager determines the required game objects and their 
appropriate visual qualities for delivering to the game clients. (Refer to Section 4 for 
detail.) The Model Database stores the complete game content, in which all the object 
models, texture images and motion captured data are kept in a progressive transmission 
ready format. The Content Delivery Manager manages the references of the selected 
items for prioritized delivery. (Refer to Section 5 for detail.) The Object Synchronization 
Manager is responsible for synchronizing the clients on the states of dynamic objects. 
(Refer to Section 6 for detail.) Finally, the Network Agent handles all communications 
between the server and the clients, including content delivery and status updates. 

 

 
The client module has 6 components. The Client Manager coordinates all components 

at the client. It processes updates from both the server and the local input devices. The 
Model Manager maintains the object models received from the server for local rendering 
and performs cache management. The Local Storage is the application accessible storage 
space in the client for the model manager to store objects received from the server. The 
Action Manager reads control commands from input devices. It extrapolates the 
movements of dynamic objects to minimize the amount of update messages sent over the 
network, and synchronizes dynamic objects to minimize their discrepancy between the 
client and the server. (Refer to Section 6 for detail.) The Graphics and Sound Engines are 
responsible for rendering visual and audio outputs in a time critical manner. Finally, the 
Network Agent handles all communications with the server, including receiving the game 

 
Fig. 1.  The architecture of the game-on-demand engine. 
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models, texture images and state updates from the server. It also sends updates and 
actions of the client to the server. 

4. GAME CONTENT MANAGEMENT 
The game-on-demand engine manages the game content at scene level and model level to 
support content selection. At the scene level, the content is stored in a way that the server 
may efficiently identify appropriate game objects for delivery. At the model level, 
different types of modeling primitives, including deformable models, rigid models, and 
texture images, are arranged in a unified data structure for progressive transmission and 
multi-resolution rendering. For transmission, the server determines the optimal resolution 
of each object for delivery based on some dynamic conditions, such as object distance 
from the player or the available network bandwidth of the client machine. For rendering, 
a client may select appropriate resolution of each object to display using any real-time 
rendering method [To et al. 2001]. 

4.1 Scene-Level Content Management 
To determine the visible objects to a particular game player, we have adopted the 
viewer/object scope idea from [Chim et al. 1998], which can be considered as a restricted 
form of the Focus/Nimbus model [Greenhalgh and Benford 1995]. We associate each 
object in the game with an object scope Oo, which is a circular region defining how far 
the object can be seen. We also associate each player with a viewer scope Ov, which is a 
circular region defining how far the player can see. However, unlike [Chim et al. 1998], 
which defines the viewer scope as a single region, here we define it as a circular region 
with multiple parts as will be described in Section 5. An object is visible to a player only 
if its Oo overlaps with Ov of the player. Here, we classify the game objects into static 
objects and dynamic objects. A dynamic object, such as an avatar of a player or an 
autonomous object, may change shape or move around in the game scene while a static 
object, such as a building, is not supposed to move at all. 

During run-time, as a player moves around in the game scene W, we need to check 
continuously for objects that are visible to the player, i.e., objects to be transmitted to the 
client. To speedup this process, we partition W regularly into |W| rectangular cells, i.e., W 
= {C1, C2, …, C|W|}. Each cell Cn may contain a list of references to |Cn| shadow objects, 
i.e., Cn = {OCn,1, OCn,2, …, OCn, |Cn|}, where 1 ≤ n  ≤ |W|. These shadow objects are objects, 
which object scopes overlap with Cn. To set up a game, for each object Oi, we add a 
reference of Oi to all the cells that object scope Oo,i of Oi overlaps. During run-time, when 
we determine the potentially visible objects to a player, we only need to check all the 
cells that Ov of the player overlaps. The set of potentially visible objects to the player is 
the union of all the shadow objects found in all the cells that Ov overlaps. For the 
dynamic objects that may move around in the scene, we dynamically update the shadow 
object lists of all the affected cells. To speedup the searching time and update cost of 
dynamic objects, we may split the shadow object list in each cell into two, one for static 
objects and the other for dynamic objects. 

4.2 Model-Level Content Management 
Our engine supports three types of modeling primitives, rigid models, deformable models, 
and texture images. All of them are formatted to support progressive transmission and 
multi-resolution rendering. 
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4.2.1 Definitions of Game Objects 
Each game maintains a game object database Φ at the server(s), storing all the geometry 
models M, texture images T and motion data A used in the application,  i.e., Φ = {O, M, T, 
A}. O is the set of game objects defined as O = {O1, O2, …, O|O|}. Each object Oi in O is 
composed of a number of models MOi

 (where MOi
 ⊂ M), a number of texture images TOi

 
(where TOi

 ⊂ T), a number of motion data AOi
 (where AOi

 ⊂ A), an object scope Oo,i, and a 
viewer scope Ov,i, i.e., Oi = {MOi

, TOi
, AOi

, Oo,i, Ov,i}. In general, an object is composed of 
one or more models. Each model may include zero or more texture images. If Oi is a 
dynamic object, it may be assigned with a set of motion data or a program module 
indicating how Oi should move and react to the environment. Note that since each 
geometry model, texture image or motion data may be used by more than one object, we 
consider each of them as a transmission primitive. When an object is to be transmitted to 
a player, we would check each of its primitives to see which are already transmitted or 
need to be transmitted to ensure that each primitive is transmitted to the same client once.  

4.2.2 Unification of Modeling Primitives 
To simplify the programming interface, we organize the geometry models, texture images 
and motion data in a unified data structure. We refer to each of these transmission 
primitives as a modeling primitive U, which may be represented as a base record U0 
followed by an ordered list P of progressive records {p1, p2, …, p|P|}. The base record U0 
contains information for reconstructing U at its lowest resolution. This record is critical 
as it is the baseline information for a game player to perceive the existence of this 
modeling primitive. Progressive records, in contrast, are used to improve the resolution of 
the modeling primitive. Delaying or even abandoning the transmission of these records 
may affect the perceived quality of the modeling primitive, but typically has limited long-
term effect. If we apply each of the progressive records pn in P to U0 using function Ω(u, 
p), a list of approximations of U, {U0, U1, U2, …, U|U|}, is obtained, where Un =  Ω(Un-1, 
pn). Each Un in the list improves the quality of Un-1 by a small amount, until reaching the 
maximum resolution U|P|, where U|P| = U. To transmit U to a client, we first transmit the 
base record U0 to help alert the player of the existence of a modeling primitive. Given 
more time, we may progressively transmit the progressive records to the client to enhance 
the visual quality of the modeling primitive. The four types of modeling primitives that 
we support are described as follows: 

Rigid Models: These are triangular models encoded in a format similar to the 
progressive meshes [Hoppe 1996]. To encode a model U, a list of Ω-1 is applied to U 
recursively to remove the geometric details from the model until U0, the coarsest 
approximation of U, is obtained. Hence, a list of progressive records {p1, p2, …, p|P|} is 
generated. Ω-1 is defined as (Un-1, pn) = Ω-1(Un). It is an inverse function of Ω. 

Deformable Models: This is a particularly interesting category of objects that we support. 
The shapes of deformable objects may change over time. They are classified as dynamic 
objects and represented using NURBS. Each deformable object may be composed of one 
or more NURBS models and optionally some rigid models, and each NURBS model is 
considered as a modeling primitive. In [Li et al. 1997], we propose to represent each 
NURBS model by a polygon model and a set of deformation coefficients to support 
efficient rendering. This information is maintained in a quad-tree hierarchy. To support 
progressive transmission, we organize the quad-tree into an ordered list based on the z-
ordering indexing scheme [Balmelli et al. 1999]. The list begins with a base record U0, 
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which consists of the surface definition, a node presence list and a root record to 
represent the deformable NURBS model at the minimal resolution as shown in Figure 2. 
Subsequent records {p1, p2, …, p|P|} of the list store information for refining the 
precomputed polygon model. A Ω function is defined to combine the information stored 
in each pn to Un-1 to form a slightly refined model Un. 

 
Texture Images: A straightforward way to handle texture images is to encode them in a 
progressive JPEG format for transmission. However, JPEG requires an expensive inverse 
discrete cosine transform operation to extract texels from the compressed images. Instead, 
we extend the color distribution method [Ivanov and Kuzmin 2000] to support 
progressive transmission of compressed texture images. This method encodes a texture 
image by dividing it into uniform grids of texel blocks. Each texel block is encoded as 
two sets of 32-bit datum, a 32-bit representative color in RGBA format and a set of 2-bit 
color indices for 4×4 texels. For each texel block, a local palette is set up, containing the 
representative color of the block and the representative colors of three adjacent texel 
blocks. The color of a texel within the block is then approximated by a 2-bit color index 
to this palette. This method may compress a normal texture image to about ⅛ of its size. 
To support progressive transmission, we arrange the texture data in the form of an 
ordered list. The list begins with a base image U0, which is formed by extracting one bit 
from each channel of the RGBA of the representative color of each texel block. Each 
subsequent record pn of P is formed by alternatively extracting 4-bit information 
sequentially from the texel color index for each texel block and 4-bit RGBA color value 
of the representative color. A Ω function is defined to attach the information stored in 
each pn to Un-1 to recover the details of the texture image.   

5. PRIORITIZED CONTENT DELIVERY 

5.1 Geometry Transmission Priority 
We make use of the object scope and viewer scope to identify interested objects to each 
player. In Figure 3(a), the viewer scope contains three regions, Q1, Q2 and Q3. Q1 is the 
visible region. All objects within it are considered as visible to the player and have the 
highest priority for transmission. Q2 is the potential visible region, composed of Q2a and 
Q2b. All objects within it are not immediately visible to the player but will become 
visible if the player simply moves forward or turns its head around. Hence, these objects 
may be transmitted to the client, once all the objects in Q1 have been transmitted. Q3 is 
the prefetching region. Normally, it will take some time before objects within Q3 become 
visible to the player. Hence, we would prefetch them to the client machine if extra 
network bandwidth is available. To speedup the process of selecting objects for 
transmission, we maintain a delivery queue for each of these regions. Hence, there are 
three queues, Queue 1, Queue 2 and Queue 3 for regions Q1, Q2 and Q3, respectively. 
All the objects in the delivery queues are sorted according to their transmission priority. 
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Fig. 2.  Progressive transmission of a deformable NURBS model. 
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To efficiently determine the region that an object belongs to, we set up 4 viewing 
segments for each player in the player’s local coordinate system as shown in Figure 4. 
We label the segment where the player’s viewing vector is located as S1. The segments 
having the same sign as the x- and y-coordinates of S1 are labeled as S2 and S3, 
respectively. The segment having opposite signs to both x- and y-coordinates of S1 is 
labeled as S4. The four possible configurations of the viewing segments are shown in 
Figures 4(a) to 4(d). We refer to the left and right boundary of the visible region as VL 
and VR, respectively, as shown in Figure 4(e). 

 

 

 
For each object G, we calculate its relative coordinate (xg, yg) from the player. 

Referring to Figure 4(e), the signs of xg and yg indicate the viewing segment that the 

object belongs. The distance of G from the player is computed as: 22
ggg yxD += . 

Assuming that the radius of the viewer scope of the player is r and the radius of the object 
scope of G is rg, G is deliverable only if Dg < r + rg. If G is deliverable, we put a 
reference of G into the player’s corresponding object delivery queue based on its visual 
importance to the player. In our implementation, the priorities of the three queues for 
transmission are: Queue 1 > Queue 2 > Queue 3. Objects placed in a queue with lower 
priority may be delivered to the player if all queues with higher priorities are emptied. 

 
Fig. 4.  Four viewing segments of a player. 

  

 
Fig. 3.  The viewer scope and the object delivery queues.  
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(Of course, we may also implement it in a different way such that a different percentage 
of data would be sent from each queue, with highest percentage from Queue 1 and lowest 
from Queue 3.) Within a delivery queue, objects are first sorted by their angular distances 
An from the player’s viewing vector, and then sorted by their distances Dn,m from the 
player. As shown in Figure 3(b), we quantize An into a number of vertical subqueues and 
Dn,m into a number of vertical bins. When retrieving objects for delivery, we select from 
the left-most vertical subqueue (with lowest An) to the right-most subqueue (with highest 
An) one by one. For each selected subqueue, we transmit objects starting from the top bin. 
This process is iterated until all subqueues are emptied or the queues need to be updated. 

Table 1 summarizes the rules to determine the region that an object G belongs. 
Column 1 shows the viewing segment that G belongs. Column 2 shows the rules to 
determine the appropriate region for G. Column 3 shows how to compute the angular 
distance of G from the player's viewing vector. To combine objects from regions Q2a and 
Q2b into a single queue, we need to adjust the angular distances A and Euclid distances D 
of these objects before inserting them into Queue 2. For objects from Q2a, we set A = A – 
½θview. This is to normalize its angular distance value to start from zero. For objects from 
Q2b, we set D = D – (p · r).  This is to normalize its distance value to start from zero. 

 

 
As shown in Table 1, when considering the angular distance factor in identifying the 

order of object delivery, we only need to perform a simple angle comparison instead of 
evaluating a dot-product for each object against the viewing vector of each player. If the 
player has not changed its viewing direction, θV, θL and θR as defined in Figure 4(e) can 
be considered as constants. To determine the region of object G, we only need to evaluate 
either θgx or θgy, which is the angular distance of G from the x-axis or y-axis of the 
viewing segment of the player, respectively. For example, )(tan 1

gggx xy−=θ  and 

Table I. Assigning objects to appropriate regions. 
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)(tan 1
gggy yx−=θ . In practice, the run-time arctangent evaluation may be avoided. 

Since we only consider objects that are within the outer circle of the prefetching region, 
we may pre-compute a set of arctangent values, )(tan 1 yx− , with different combinations 
of x and y, where x, y ≤ r. In addition, as we have divided the game scene into a grid of 
small cells, the representative coordinates of each cell may well approximate the 
positions of all the objects in it. Hence, we may use these coordinates to compute only a 
finite set of arctangent values to avoid the computation of a continuous series of 
arctangent values. 

5.2 Object Quality Determination 
After we have prioritized the objects for delivery, we need to determine the amount of 
geometric information, i.e., the quality, of each object for progressive transmission. Since 
each object is composed of some transmission primitives, the server would map an object 
to the corresponding transmission primitives when the object is considered for 
transmission. For each player, the server maintains a deliverable list of the transmission 
primitives. Each entry of the list stores two parameters of a primitive, Psent and Popti, 
which indicate the number of progressive records sent and the preferred optimal number 
of progressive records, respectively. Psent is updated whenever some progressive records 
of the primitive are sent. Popti is determined based on some real-time factors as follows: 

Popti = Pmax × (γ B + τ R + α (1 – A) + β (1 – D)) (1) 
where Pmax is the maximum number of progressive records that the primitive has. 
Parameters A, B, R and D are normalized by their maximum possible quantities and they 
range from 0 to 1. B and R represent the available network bandwidth and the rendering 
capacity of the client machine, respectively. To simplify the computation, we may 
assume that they are constants throughout the session. D and A are two dynamic factors, 
indicating the distance of the object from the player and the angular distance of the object 
from the player’s viewing vector, respectively. If there is more than one visible object 
using a primitive, we would assign the smallest distance and angular distance values as A 
and D, respectively. This would increase Popti to fulfill the maximum requirement of all 
the relevant visible objects. Finally, α, β, γ and τ are application dependent weighting 
scalars, where α + β + γ + τ = 1. For example, if a game needs to transmit a lot of 
messages among all clients and the server, the performance of the network connections 
would have a high impact on the performance of the game. Hence we may use a higher γ 
to allow network bandwidth to be a dominating factor in determining the object quality. 

6. CONTINUOUS SYNCHRONIZATION 
The objective of our continuous synchronization scheme is to minimize the state 
discrepancy of each dynamic object (in particular the avatar) between its client host and 
the server. This has two advantages. First, it minimizes the user perceived visual quality 
degradation caused by inconsistent object states presented among game players. Second, 
minimizing the discrepancy of the avatar between the client host and server, it allows the 
server to identify and send appropriate geometry data to the client. 

Similar to the local-lag method [Mauve et al. 2004], our synchronization scheme 
attempts to align object states among the clients, providing a sufficiently correct 
condition for a motion predictor to perform dead reckoning [DIS98]. Unlike the local-lag 
method, we do not resort to pausing events as the tactic, as this introduces unacceptable 
delay. Instead, we proactively perform corrective actions to minimize state discrepancy. 
We use time duration instead of a time-stamp as the key parameter in the synchronization 
process. This implicitly avoids the time-space inconsistence problem [Zhou et al. 2004]. 
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We prolong the corrective action for a short period of time to avoid generating artificial 
state changes to trigger undesired user responses. Note that our synchronization scheme 
is designed to deal with continuous events. Discrete events, such as shooting and virtual 
item collection, can be handled by traditional causality control [Sun and Chen 2002]. 

In this scheme, we consider the server copy of each dynamic object as a reference 
simulator of the object. Regardless of whether the object is an avatar (representing the 
player) or an autonomous object, its motion must be synchronized according to its 
reference simulator. During a game play, a player may move around in the game scene by 
issuing motion commands with a keyboard or a control device. Motion vectors can then 
be computed based on these commands to form the navigation vectors of the avatar. The 
motion of the object between motion commands can be computed with a motion 
predictor. Here, we use the first-order predictor as follows: 

pnew = p + t × V (2) 
where p and V are the position and velocity of the object from the last motion command 
received, respectively. t is the time difference between pnew and p. Note that other 
predictors [DIS98] may be used instead. 

6.1 Client-Server Synchronization 
To illustrate the interactions between a client, P1, and the server, S, we consider the 
motion of the avatar on P1. There is a reference simulator of the avatar running in S. As 
shown in Figure 5, two motion timers Ts and Tc are maintained in S and P1, respectively. 
They are the virtual clocks indicating how long the avatar has been performing certain 
movement as perceived by the server and by the client. To maintain the integrity of the 
synchronization process, we allow only one motion command, which can also be a 
combined motion command, to be processed before Ts and Tc are synchronized. Hence, 
both the avatar and its reference simulator will be moving with the same motion vector 
during synchronization. Based on this, t in Eq. (2) becomes the only variable in the 
motion predictor, since we expect that both the avatar and its reference simulator will 
start to move from a synchronized position. As such, their motions are expected to be 
synchronized if Ts = Tc. When the avatar in P1 issues a motion command (state I), the 
motion command is first buffered for a very short period, about 50ms in our 
implementation. All the motion commands received during this period are combined to 
produce a resultant motion vector to be sent to the server at the end of the buffering 
period (state II). Note that this buffering period serves as a low-pass filtering process to 
reduce noise from the keyboard or the game pad. Some devices may have already 
included a noise removal mechanism and this buffering period may not be needed. 

When a new motion command is issued from P1, this motion command will take a 
single-trip time to arrive at S. If we do nothing but just let P1 to execute the new motion 
command immediately, there will be a state discrepancy between P1 and S and the 
maximum discrepancy is a single-trip delay when the motion command has just arrived at 
S. With the continuous synchronization scheme, we slow down the motion at P1 by half 
from the moment when a motion command is generated until the motion command has 
arrived at S. This effectively reduces the state discrepancy between P1 and S by half to 
half of a single-trip delay. After S has received the motion command, the state 
discrepancy will gradually drop from half of a single-trip delay down to zero, when P1 
and S are synchronized. By gradually aligning P1 and S, we avoid visual artifacts caused 
by forcing an immediate state corrective action on the avatar.  
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Our synchronization algorithm begins at state II. We set Td, the estimated time 

difference between Tc and Ts, to accum
P1ST − , which is the accumulated weighted average of 

the single-trip network latency between P1 and S. When computing accum
P1ST − , we assume 

that the delay from S to P1 is the same as from P1 to S. Hence, accum
P1ST −  is equal to half of 

the round-trip delay. Let us assume that the client updates the position of the avatar every 
∆t, which is the duration between two consecutive frames (e.g., ∆t = 40ms if a game 
renders 25 frames per second), through updating the following variables: 

t  = ∆t – sgn(Td) × ε (3) 
Td = Td – sgn(Td) × ε (4) 
Tc = Tc + t (5) 

where t is the effective time increment for every ∆t. sgn() is the sign function. Td is the 
estimated time difference between Tc and Ts. ε is computed as )2|,(|min tTd ∆ . Eq. (4) 
serves as a counter so that the adjustment process will stop when Td becomes 0ms, when 
synchronization is achieved (i.e., state IV in Figure 5). 

At state III of Figure 5, Tc is increased to 200ms while the actual time elapsed is 
400ms since state II. This is because our synchronization scheme reduces the increment 
of motion timer Tc by half with Eq. (3) and (5). At the same time, P1 receives the value 
of Ts from S, which is 100ms. We then use it to estimate the single-trip network latency, 
TS-P1, which is equal to approximately half of the absolute difference between Ts and the 
actual time elapsed from state II to state III. Whenever P1 obtains an updated TS-P1, Td 
and accum

P1ST −  need to be adjusted (in addition to Eq. (4)) as follows: 

( )accum
P1SP1Sdd TTTT −− −+=  (6) 

( ) P1S
accum

P1S
accum

P1S TTT −−− ⋅−+⋅= λλ 1  (7) 
where λ is an application dependent weight for estimating future TS-P1. In our experiment, 
setting λ to 0.5 gives reasonably good predictions most of the time. As Td is 0ms at state 
III and the updated TS-P1 is 150ms, Td is then adjusted to become -50ms, which indicates 

 
Fig. 5.  Client-server interactions. (All values are in milliseconds.) 
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that the original accum
P1ST −  is over-estimated by 50ms. The synchronization process will 

continue by repeating Eq. (3) – (5) until Td becomes 0ms (state IV). 

6.2 Client-Client Synchronization 
Our reference simulator approach natively handles the client-client synchronization 
problem. As our synchronization scheme assumes that the server runs the reference 
simulators for all objects, each client machine only needs to synchronize itself with the 
server, instead of synchronizing directly with all other clients as in [Mauve et al. 2004]. 
Synchronization among multiple clients can thus be resolved as independent client-server 
and server-client synchronization operations. Hence, our synchronization scheme can be 
run independently to the number of clients participating in the synchronization process. 

With the scenario described in Section 6.1, we now have another player P2 who wants 
to interact with P1. P2 will need to send a request to S to obtain the motion information 
of P1 and, at the same time, create a simulator locally to model the motion of P1. Figure 
6 depicts this process. 

 
When P2 receives the motion information of P1 from S (state II), it sets accum

P2Sd TT −−=  

to start the simulation locally, where accum
P2ST −  is the accumulated weighted average of the 

latency between S and P2 and we assume it to be 200ms here. Td is set to a negative value 
since we anticipate that the simulator running in P2 starts with some delay relative to S. 
As such, t in Eq. (3) now becomes 1.5∆t, which causes P2 to speed up in order to catch 
up with S. Similar to the client-server synchronization process, P2 updates the relevant 
variables in Eq. (3) – (5), until it is synchronized with S. 

In Figure 6, after P2 has received the motion information of P1 from S (state II) and 
some event processing delay, P2 returns the time duration between states II and III to S 
(state III). Upon receiving the time duration, S estimates the single-trip network latency 
between P2 and S, TS-P2. Tc will continue to speed up until Td becomes 0ms (stat IV). At 

 
Fig. 6.  Server-client interactions in the client-client synchronization process. 

 



9: 16 � F. Li, R. Lau, D. Kilis, and L. Li 
 

 
ACM Trans. on Multimedia Computing, Communications and Applications, Vol. X, No. X, Article X. 

state V, P2 receives the updated TS-P2. It then adjusts Td and accum
P2ST −  with Eq. (6) and (7). 

Since Td has been set to 0ms at state IV and the updated TS-P2 is 175ms, Td is hence 
updated to 25ms, which indicates that the original accum

P2ST −  was over-estimated. The 
synchronization process will continue by applying Eq. (3) – (5) until Td becomes 0ms 
(state VI). Finally, since any client interested in the position of the avatar only needs to 
synchronize it with the server, the motion of the avatar will ultimately be synchronized 
among all relevant clients. 

For the client-client synchronization, when the user in P1 issues a motion command, 
P1 will send the motion command to S and start the continuous synchronization process 
immediately. Hence, the maximum discrepancy, occurred when the motion command has 
just arrived at S, is 0.5-trip delay. When S receives the motion command from P1, it 
propagates it to P2. The maximum discrepancy between S and P2, which occurs when the 
motion command has just arrived at P2, is a 1-trip delay. However, at this moment, the 
discrepancy between P1 and S has been significantly reduced. Hence, the maximum 
discrepancy between P1 and P2 is between 1- and 1.5-trip delay, depending on the 
relative network latency between P1 – S and S – P2. Here, it may be interesting to 
compare with other methods. With sudden convergence, the maximum state discrepancy 
between P1 and P2 is a single-trip delay. However, it suffers from discontinuous motion. 
With the local-lag method [Mauve et al. 2004], the maximum state discrepancy can be 
higher than 2-trip delay in a client-server environment. 

7. RESULTS AND DISCUSSIONS 
We have implemented the proposed game-on-demand engine in C++ for the PC. Based 
on this engine, we have developed an online first person fighting game called Diminisher. 
It allows multiple players to navigate in a shared game scene and to fight with each other 
or with some automated opponents. Figure 7 shows a snapshot of the game. The file size 
of the client program is less than 600KB, which is small enough for game players to 
download from the Internet. With the client program, a player may connect to the game 
server to obtain an initial content package, which contains the geometry information of 
the objects surrounding the player. After receiving the package, the player may start to 
play the game. Additional content is then progressively sent to the client based on the 
location of the player in the game. In this section, we conduct a number of experiments to 
evaluate the performance of the game-on-demand engine using the prototype game and 
the performance of the synchronization scheme.  

Note that our main purpose of building the game prototype is to study the 
performance of the game-on-demand engine. We have not devoted too much effort in 
designing the game content. Nevertheless, this should not affect the validity of the 
experimental results, since with the proposed game engine, the size and the complexity of 
the game scene no longer determine the downloading time. This is made possible with 
the proposed game engine by adjusting the optimal resolutions of visible objects in 
proportional to the available network bandwidth.  

7.1 Video Demo 
A video showing a brief game play session of Diminisher is included in this submission 
and can also be downloaded at www.cs.cityu.edu.hk/~rynson/projects/ict/shortdemo.mpg. 
The network bandwidth was set at 1.5Mbps. Figure 8 shows the rendering frame rate and 
data transmission rate of the session. Our measurements were started after the client had 
received the initial content package, decoded it and begun rendering the scene. We 
observe that there was a high data transmission rate at the beginning. This is because the 
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initial content package only contains minimal amount of geometry information for the 
client to render a low visual quality scene. To improve the visual quality, the server needs 
to send additional game content to the client. Due to the low visual quality, i.e., low 
resolutions, of visible objects at the beginning, the frame rate was much higher. As the 
visual quality of the visible objects increased, the data transmission rate began to drop. 
Concurrently, the player turned and faced a scene with a lot of characters and objects, 
resulting in a significant drop in frame rate. The frame rate rose again as most of the 
opponents were killed by the player. Finally, as the player moved to a scene with a large 
number of Easter Island sculptures, the client received a lot of geometry information and 
the frame rate dropped again due to the increase in the number of primitives needed to be 
rendered. The pulses appeared approximately 15s after the start of the game as shown in 
Figure 8(b) were due to the progressive content transmission. 
 

 

 
7.2 Experiment on Game Startup Time 
In this experiment, we test the performance of the game prototype under different 
network connection speeds, ranging from 56Kbps modem speed to 10Mbps LAN speed. 

 
Fig. 8.  Performance of the game demo. 

 
Fig. 7.  A snap shot of Diminisher. 
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We measured the startup time for downloading the initial content package of the game in 
order for the player to start playing the game. As shown in Figure 9, if a player has a 
broadband network connection, i.e., network speed ≥ 1.5Mbps, the initial downloading 
time is less than 5s. If a game player connects to the game using a 56Kbps modem, the 
initial downloading time is only about 30s. This startup time is considered as acceptable 
by most players. 
 

 
7.3 Experiment on Content Delivery 
Here, we test the performance of our geometry streaming method. In the experiment, a 
player navigated the game scene in a circular path and looked around freely to visualize 
interested game objects. This allows the player to see different parts of the game scene, 
where each part has a different number of objects. There were about 150 visible game 
objects located around the player’s navigation path. They are all in compressed format 
with an average size of 124KBytes. The user perceived visual quality is defined as the 
weighted sum of the percentage of the required model data received by each visible 
object, Pi, normalized by the sum of all weights, Σωi, where in this experiment the weight 
for the ith visible object is determined by a simplified version of Eq. (1), with ρ = φ = 0.5 
and γ = τ = 0. Hence, the visual quality can be written as: 

 Σ (ωi ×Pi) / Σωi (8) 
We compare the visual quality during the navigation using the following model 

transmission methods:  
• Method A is our method; 
• Method B uses the prioritized content delivery scheme only; 
• Method C uses progressive transmission only; 
• Method D transmits the base record of each object model only. 

We performed the experiment using a 56K modem (Figure 10(a)) and a 1.5Mbps 
(Figure 10(b)) connection. (However, we allocated only 60% of the bandwidth for the 
game engine and the rest for collecting the statistics by the test program.) For methods 
with progressive transmission, i.e., methods A and C, the game server would transmit the 
current visible objects to the client up to their optimal resolutions as described in Section 
5.2. A player is said to perceive 100% visual quality if the client receives all such objects 
in their optimal resolutions. For method B, a player could visualize a game object only if 
the complete object model was received by the client. Hence, the player could perceive 
100% visual quality of an object only if the model was completely transmitted to the 
client; it was 0% otherwise. As a reference, we performed an additional test by setting the 
server to transmit only the base records of the objects requested (method D). 

From Figure 10, we observe that our method (method A) offers the player a 
significantly better perceived visual quality than other methods do on both network 

 
Fig. 9.  Startup time vs. network connection speeds. 
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conditions. Note that the fluctuation in the visual quality is due to the fact that the player 
keeps looking around in the game scene as it moves. 

 

 
When compared with method C, our method could provide 20% to 70% higher 

perceived visual quality. In method C, progressive transmission allows more objects to be 
transmitted within a short period of time and to improve their visual quality progressively. 
It resembles the work in [Hu 2006]. However, this method does not account for the fact 
that certain objects contribute more significantly to the overall visual quality than the 
others based on some viewing parameters [Lau et al. 1997]. Without a proper scheduler, 
it cannot guarantee building up high visual quality efficiently, as it sometimes spends 
time on transmitting less important objects before important ones. Our method produces a 
better result with the prioritized content delivery scheme. 

When compared with method B, our method may even provide 80% higher perceived 
visual quality occasionally. Method B tests the effect of using the prioritized content 
delivery scheme but without progressive transmission. This method cannot build up the 
visual quality efficiently because an object may contribute to the overall visual quality 
only if the entire model has been received by the client. Hence, this method may spend a 
lot of time transmitting data which may not help improve the visual quality. 

 Method D only transmits the base record of each object model, and this base record is 
defined to contribute 100% of object quality. The performance collected for this method 
may serve as a reference. Given that method D only requires minimal geometry 
information to be transmitted to the client, the quality difference between methods A and 
D indicates that there is room for application designers to refine the value of the optimal 
perceived visual quality. This provides flexibility for game systems to adapt to various 
resource limitations. Practically, a game system can set up a performance test on this to 
help calibrate the real-time factors and application dependent weighting scalars as 
described in Section 5.2.  

7.4 Experiment on Synchronization 
To determine the performance of the synchronization scheme in our game-on-demand 
engine, we have tested it with three player’s movement patterns: linear, zig-zag and 
circular paths, under different network latencies, including 0.64ms (for LAN), 10 ms (for 
Internet - within a city) and 160ms (for Internet - international). In the experiment, player 
A navigates in the game scene and reports its states to the server, where the reference 
simulator of A is being run. Player B is interested in the motion of A, and requests for 
motion information of A from the server. Since our synchronization scheme only requires 
a player to align its motion with the reference simulator running on the server, the 

 
Fig. 10.  Efficiency of various content delivery methods. 
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synchronization among multiple players can hence be resolved as independent client-
server and server-client synchronization operations. To determine how well our 
synchronization scheme works, we monitor the motion timers of various parties for a 
period of time to determine the discrepancy among the relevant parties.  

Figure 11 shows the performance of our synchronization scheme. To improve the 
readability of the results, we use two different scales to depict the state discrepancies 
under different network environments. Since the state discrepancy values collected from 
the LAN and from the local Internet connection are generally smaller, they are plotted 
based on the scale on the primary y-axes (the vertical axes on the left). However, the state 
discrepancy values collected from the overseas connection are in general much higher 
and are plotted based on the scale on the secondary y-axes (the vertical axes on the right). 
As shown in the diagrams, all the relevant parties would in general experience a large 
state discrepancy when a motion command is just being sent out. 

 

 
Consider the first set of results as shown in Figures 11(a) to 11(c). Since the results 

from different network connections generally exhibit similar behavior, we focus our 
discussion on those from the overseas connection, as the effect here is more obvious. 
Since player A navigates in a linear path, only a single motion command is issued. In 
Figure 11(a), at around 0.2s, when the server has just received a motion command from A, 
there is a large state (or motion timer) difference between client A and the server, as they 
are running different motion commands. With the continuous synchronization scheme, 
we slow down the speed at client A by half from the moment when a motion command is 
generated until the motion command has just arrived at the server. This effectively 
reduces the state discrepancy between A and the server by half to 0.5-trip delay, since by 

 
Fig. 11.  Experimental results of our synchronization scheme. (All the numbers on the vertical 

axes are in miliseconds while all the number on the horizontal axes are in seconds.) 
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the time when the server receives the motion command, A has effectively been 
performing the motion command for only a duration of 0.5-trip delay. After the server 
has received the motion command (at about 0.2s) and applied it, the state discrepancy 
will gradually drop from 0.5-trip delay down to zero (at about 0.45s). At this moment, A 
and the server are said to have synchronized. Figure 11(b) depicts the motion timer 
difference between the server and player B, who is interested in the motion information 
of A. At 0.4s, when B has just received the motion information of A from the server, 
there is a large motion timer difference between B and the server. Since there is no trivial 
way to correct the discrepancy at this moment, the amount of discrepancy is equal to a 
single-trip delay. Finally, A and B are supposed to suffer from a two-trip delay. However, 
since A has started the continuous synchronization process with the server earlier, the 
discrepancy between A and the server would have been much reduced by the time when 
B has received the motion command from A. Hence, the discrepancy between A and B is 
reduced to about a single-trip delay. 

Figures 11(d) to 11(f) show the second set of results. Here, player A moves in a zig-
zag path by pressing different command buttons alternatively to change the movement 
directions. From the diagrams, we can see that whenever A issues a new motion 
command, a discrepancy pulse appears. We can see that the period from the start of a 
pulse to the start of the next pulse, e.g., the period from 0.3s to 2.5s in Figure 11(d), 
exhibits similar behavior as in the first set of the results. This is because during each of 
these periods, the avatar of A essentially moves in a straight line. 

Figures 11(g) to 11(i) show the final set of results. Here, player A moves in a circular 
path by pressing different command buttons continuously. Overall, this set of results 
exhibits similar behavior as the second set. In fact, both cases are conceptually similar as 
they both require the player to continuously issue different motion commands in order for 
the avatar to move according to the desired paths. The difference is that in this set of 
results, there are more discrepancy pulses generated within the same period of time as it 
requires the player to change the command buttons more frequently in order for the 
avatar to move circularly. 

Finally, we can see from the results that some small discrepancy pulses occur in most 
of the diagrams even after our synchronization operations, e.g., the period from 0.5s to 
2.5s in Figure 11(d). This is because our method attempts to correct the discrepancies 
based on estimating the network latency from recent network communications. This 
estimation would sometimes cause small errors when the network traffics fluctuate 
significantly. 

To summarize, the proposed continuous synchronization scheme is simple and 
effective. The main limitation is that it can only handle one motion command at a time. A 
new motion command cannot be processed until the current one has been synchronized. It 
typically takes about one round-trip delay to synchronize a motion command. To reduce 
the effect of this problem, while synchronizing a motion command, we combine all the 
motion commands received into one, to be processed after the current one is 
synchronized. 

8. CONCLUSION 
In this paper, we have presented the game-on-demand engine for multiplayer online 
games based on progressive geometry streaming. The engine allows game clients to 
download game content progressively, without the need to purchase game discs or wait 
for a long download time. Our main contributions of this paper include a two-level 
content management scheme for organizing the game objects, a prioritized content 
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delivery scheme for scheduling game content for delivery based on object importance and 
on network bandwidth, and a global-wise continuous synchronization scheme for 
synchronizing the motion timers in the client and in the server. They form an integrated 
solution to deliver good user-perceived visual quality to the game players. We have 
demonstrated the performances of the framework through a number of experiments. 

 As handheld devices are becoming ever more popular and people carry them around, 
there is an increasing interest in technologies that support mobile games. Due to the small 
memory space, low network bandwidth and high network latency of handheld devices, 
there have been difficulties in putting large games, and in particular multiplayer online 
games, into handheld devices. We believe that our game-on-demand engine can address 
these problems very well. As future work, we would like to adapt our engine to the 
handheld platform to support large-scale multiplayer online games. We would also like to 
consider simplifying the prioritized content delivery scheme, which is important in 
particular for mobile devices with lower processing capability. Finally, we would also 
like to consider different ways of selecting objects from the object delivery queues for 
transmission. 
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