
Supporting Continuous Consistency in Multiplayer Online
Games

Frederick W.B. Li† Lewis W.F. Li‡ Rynson W.H. Lau‡

† Department of Computing, The Hong Kong Polytechnic University, Hong Kong
‡ Department of CEIT, City University of Hong Kong, Hong Kong

ABSTRACT
Multiplayer online games have become very popular in recent
years. However, they generally suffer from network latency prob-
lem. If a player changes its states, it will take some time before
the changes are reflected to other concurrent players. This sig-
nificantly affects the interactivity of the game. Sometimes, it
may even cause disputes among the players. In this paper, we
present a continuous consistency control mechanism to support
collaborative game applications. Specifically, we propose a re-
laxed consistency control model for continuous events. Based on
this model, we have developed a method to provide a global-
wise continuous synchronization on the states of dynamic game
objects presented among concurrent game players. We show the
performance of the proposed method through some experiments.

Categories and Subject Descriptors: C.2.4 [Computer- Com-
munication Networks]: Distributed Systems - Distributed applica-
tions
General Terms: Performance, Human Factors.

Keywords: Consistency control, distributed synchronization, collab-

orative gaming, distributed virtual environments.

1. INTRODUCTION
Due to the existence of relatively high network latency of the
Internet, a player of a multiplayer online game may perceive
significant delay in receiving updated state information of
other players as these players move around in the game
environment. For example, in Final Fantasy XI [5], which
is one of the popular online games currently available in the
market, a player usually receives position updates of other
game players with almost a second delay. In order to reduce
the effect of such delay, some restrictions are imposed on the
game itself. First, players can only attack enemy objects,
but not each other. Second, the enemy objects are designed
to move very little while they are under attack by a player.
Such game rules significantly limits the game features and
the type of games that can be developed.

Consistency control in distributed applications has been
explored in different disciplines, including distributed sys-
tems [6], database systems [1] and collaborative editing sys-
tems [8]. These systems generally regard state updates as
discrete events. Hence, their applications could work well by
only ensuring that state updates are presented to the rele-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’04, October 10-16, 2004, New York, New York, USA.
Copyright 2004 ACM 1-58113-893-8/04/0010 ...$5.00.

vant users in a correct order, without considering the exact
moment that the state updates are presented to the users.
However, this method could hardly satisfy the requirements
of multiplayer online games or distributed walkthrough sys-
tems [3], where events are usually continuous [7] and must
be presented to users within an accepted period of time in
order to maintain the interactivity of the game.

To address the network latency problem of multiplayer
games, Mauve et al. [7] adopt a local-lag mechanism. When
a player (sender) issues an event, the event will be sent and
presented to other players immediately, but not to the sender
itself until after the local-lag period is expired in order to
reduce the discrepancy between the sender and the receivers.
However, with this method, each sender is limited to have
only a single local-lag value. Hence, this method can only be
used to synchronize between two players, the sender and the
receiver; it cannot be used to maintain consistency among a
number of players. On the other hand, in Half-Life [2], game
players make use of the reference state information from
the server to correct the states of their local copies of the
dynamic objects. However, there is no control mechanism
to guarantee that the actions performed at a player would
be synchronized with those at other players.

In this paper, we propose a continuous consistency control
mechanism to support collaborative gaming. The rest of this
paper is organized as follows. Section 2 presents a consis-
tency model for collaborative game applications. Section 3
describes our continuous synchronization scheme. Section 4
discusses the experimental results of our method, and briefly
concludes our work.

2. CONSISTENCY CONTROL
In traditional distributed systems, consistency control is typ-
ically performed by maintaining the causality [9] of events
presented to each replicated site, where the events are not
independent of each other. This is modeled as follows:

Definition 2.1. Given two events, Ea and Eb, if Ea →
Eb, then Ea must be executed before Eb at each replicated
site, where → denotes the causal order relation.

However, this model is not sufficient to handle multiplayer
online games, as it does not impose any requirement on
the exact moment when the states must be presented to
the users. Hence, the users may perceive different states
of a shared object at certain moments in time. This may
cause visual inconsistency among the users and lead them
into making incorrect decisions. To facilitate collaboration
among users, ideally, given an updated state of a shared data

object, the same update should be revealed to all users at
the same time. This could be modeled by a time-dependent
consistency control model as follows:

Definition 2.2. Given two distinct sites, i and j, which
have replicated a common shared object o, the states of o,
si(t) and sj(t) at site i and site j, respectively, should be the
same at any time moment t.

In practice, the above requirement is hard to enforced,
due to the existence of network latency. Events generated
at a site are usually received by other sites after some delay,
which causes state discrepancy among these sites. Although
Mauve et al. [7] apply a local-lag mechanism to minimize
the discrepancy in state updates between a pair of sites,
as discussed in Section 1, the method is unable to provide
a global-wise consistency control. To provide continuous
consistency control, instead of enforcing strict consistency
on individual state, we propose a relaxed consistency control
model as follows:

Definition 2.3. Given that two distinct sites i and j have
replicated a shared object and the states of the replicated
object at time t are si(t) and sj(t), respectively, the state
discrepancy D of the object at the two sites during any time
period between Ta and Tb should be smaller than an applica-
tion specific tolerance, ξ. Therefore,

D =

∫ Tb

Ta

|si(t) − sj(t)|dt < ξ (1)

This model considers the continuous property of state
changes in interactive applications such as online games.
We have observed that in this kind of applications, the
users are more concerned about the state trajectory of each
moving object. This state trajectory is the trajectory of a
continuous sequence of state updates regarding to a moving
object. The user would decide how to respond the changes
of an object based on observing its state trajectory, instead
of its individual states. Hence, we propose the relaxed con-
sistency control model that relaxes the strict time-dependent
consistency control on individual states of a replicated object
as in definition 2.2 to allow the state trajectories of the
replicated object to deviate from that of the correct one
by an acceptable amount. In fact, the relaxed model will
become the strict model if we shorten the time period so
that Ta = Tb and set ξ = 0.

3. CONTINUOUS SYNCHRONIZATION
To show how to incorporate the relaxed consistency control
model in an interactive application, we consider a client-
server based game system. The server will run a simulator of
each dynamic object in the game. We refer to this simulator
as the reference simulator of the object. A dynamic object
can be either an autonomous object, which is a software
controlled object, or an avatar, which is a player controlled
object representing the player itself. Each client is required
to synchronize any dynamic objects stored with the corre-
sponding reference simulators at the server.

In a traditional client-server system, if a client wants to
communicate with another client, the message has to go
through the server. In a multiplayer online game, if a client
(or player) is interested in a dynamic object managed by
another client, it will need to perform the synchronization
via the server. This will cause the client to suffer from a
double round-trip time delay to obtain the state information

of the object. By running the reference simulator at the
server, however, the latency is reduced to a single round-
trip delay.

In an online game, a player typically controls its own
avatar by issuing motion commands through manipulating
a keyboard or a game pad. In our method, a player may
initiate or modify the current motion of its avatar by issu-
ing a motion command, based on which a motion vector is
computed as the navigation vector of the avatar. Subsequent
movement of the avatar will follow a motion predictor. In
our implementation, we use a first-order predictor as follows:

pnew = p + t × V (2)

where p is the current position of the avatar, t is a motion
timer difference between p and pnew, and V is the motion
vector of the avatar. Note that other motion predictors can
also be used here [4].

3.1 Client-Server Synchronization
To illustrate the interactions between the client machine
of a game player and the server, we consider a situation
where the player is moving in the game environment and
the server is running a reference simulator of the player,
as shown in figure 1. Here, two motion timers Ts and Tc

are maintained at the server and the client, respectively.
They are the virtual clocks indicating how long the avatar
has been performing certain movement as perceived by the
server and by the client. Assuming that both the avatar and
its reference simulator move with the same motion vector,
then the motions of these two objects are expected to be
synchronized if Ts has the same value as Tc.

Ac Bc Cc

Motion Command
Issued

400

100

Ts = 0

As Bs Cs

Ts = 100

50

Current Position
and Motion

Vector Ts = 100

Dc

Motion Command
Issued

. . .

. . .

Ts = 0

50

Ec

Set Td = -50
Tc = 200

Client

Server

Ts = 350

Tc = 350

100

Ts = 100

Ds

Ts = 100

Fc

400

Tc = 0
Set Td = -25Set Td = 175

Tc = 225

Td = 0

Set Td = 200
Tc = 0

Current Position
and Motion

Vector

Figure 1: Client-server interactions.

When a player issues a motion command to drive its
avatar to move in certain direction (state Ac), the motion
command is first buffered for a very short period, about
50ms in our implementation. All the motion commands
received during this period will be combined and only the
resultant motion vector will be sent to the server at the
end of the buffering period. This buffering period acts as
a filtering process to limit the input frequency from the
keyboard or game pad.

Our implementation approach is to gradually synchronize
the client with the server. Let us assume that the avatar’s
position is updated every ∆t in order to be able to render
the most updated frame. Hence, ∆t may be considered
as the duration between two consecutive frames. During
each frame, the client updates the position of the avatar by
updating the following variables:

t = ∆t − sgn(Td) × ε (3)

Td = Td − sgn(Td) × ε (4)

Tc = Tc + t (5)

where t is the one used in Equation 2 for computing the new
position of the avatar. Td is the estimated time difference be-
tween Tc and Ts. ε is computed as min(|Td|, ∆t

2
). Equation

3 adjusts the duration of t in order to control the amount
of motion of an avatar. This approach helps gradually align
the motion of the avatar in the client to synchronize with
the reference simulator in the server. Equation 4 acts as a
counter so that the adjustment process will continue until
Td = 0, when synchronization is achieved (eg., when Tc =
Ts = 350 in figure 1).

At state Cc of figure 1, the client receives the value of Ts

from the server. It can then evaluate the updated round-
trip time RT , where RT is approximately equal to half of
the absolute difference between Ts and the time duration
from state Bc to state Cc. In addition, as the updated
RT is obtained, Td will need to be adjusted (in addition
to Equation 4) with the new round-trip delay as follows:

Td = Td + (RT − RTaccum) (6)

RTaccum = α · RTaccum + (1 − α) · RT (7)

where RTaccum is an accumulative weighted average of RT .
α is an application dependent weighting scalar for estimating
future RT . In our game system, setting it to 0.5 seems to
give reasonably good predictions most of the time. While
the command button is still pressed (states Ac to Dc), the
motion of the player will be extrapolated using the motion
predictor shown in Equation 2, until the command button is
released or a new motion command is issued (state Dc). If a
new motion command is detected, another synchronization
cycle would be initiated (state Dc).

3.2 Client-Client Synchronization
Our reference simulator approach natively handles the client-
client synchronization problem. Given a player A, there is
an avatar representing the player in the game environment
and a reference simulator running in the server to model
its motion. The motion of A (and therefore its avatar) is
adjusted gradually to synchronize with that of the reference
simulator at the server. If another player B needs to interact
with A, client B will send a request to the server to gather
the motion information of A, and at the same time, it will
create a simulator locally to model the motion of A. Figure
2 depicts this process.

Server

Client

Ac Bc Cc

500

150

100

500

Ts = 0 As Bs Cs Ds

Ts = 500 Ts = 600

Current Position
and

 Motion Vector
RTd=175

. . .

. . .

Dc

Ts = 0

Tc = 0
Td = 25Td = -200
Tc = 850

Tc = 900

Ts = 900

Send Motion
Information to

a client

Tc = 0
Td = 150

Td = 0

Current Position
and

 Motion Vector

Initial
Run Time

Send Motion
Information to

a client

Figure 2: Client-server interactions in the client-client

synchronization process.

After client B has received the motion information of A
from the server (state Ac), it sets Td = −RTaccum to start
the simulation locally. Td is set to a negative value since
we anticipate that the simulator running in client B would
start with some delay relative to the reference simulator of
A at the server. Similar to the client-server synchronization

process, whenever a client needs to update the position of
an avatar, it will need to update the relevant variables as
shown in Equations 3, 4 and 5. In addition, the client
will also send an initial run time, i.e., the time duration
between state Ac and Bc, to the server to request for the
updated round-trip time information to prepare for its sub-
sequent synchronization process. As a result, the gradual
synchronization process is performed in a way similar to
the one shown in Section 3.1. Finally, since the motion of
any local simulator modeling the motion of a remote player
would be synchronized against the reference simulator at the
server, motion of any particular avatar could ultimately be
synchronized among all relevant client machines.

4. RESULTS AND CONCLUSION
To study the performance of our method, we incorporate it
into a network game engine that we have developed. This
game engine is based on the DVE system that we devel-
oped earlier [3]. We have experimented it with three avatar
movement patterns: linear, zig-zag and circular paths, under
different network latencies, including 0.64ms (for LAN), 10
ms (for Internet - within a city) and 160ms (for Internet -
international). In the experiments, player A navigates in
the game environment and reports its states to the server,
where the reference simulator of A is being run. Player
B is the one interested in the motion of A, and requests
for motion information of A from the server. To determine
how well our synchronization method works, we monitor the
motion timers of various parties for a period of time. We
try to determine the discrepancy among the relevant parties.
Referring to the motion predictor shown in Equation 2,
the motion timer is the only parameter to determine the
difference in spatial location between two copies of a shared
dynamic object, since they are supposed to move with the
same motion vector.

Figure 3 shows the performance of our synchronization
scheme. To improve the readability of the results, we use
two different scales to depict the state discrepancies under
different network environments. Since the state discrepancy
values collected from the LAN and from the local Internet
connection are generally smaller, they are plotted based on
the scale on the primary y-axis (the vertical axis on the
left). However, the state discrepancy values collected from
the overseas connection are in general much higher and are
plotted based on the scale on the secondary y-axis (the
vertical axis on the right). As shown in the diagrams, all
the relevant parties would in general experience a large state
discrepancy when a motion command is just being sent out.

Consider the first set of results as shown in Figures 3(a-
c). Since the results from different network environments
generally exhibit similar behavior, we focus our discussion
on those from the overseas connection, as the effect here is
more obvious. Since player A navigates in a linear path, only
a single motion command is issued. Refer to figure 3(a). At
around 0.2s, the server just receives a motion command from
the player. Due to network latency, there is a large motion
timer difference between the server and A at this moment.
However, since A would start the gradual synchronization
process as soon as it has sent a motion command to the
server, the difference will be quickly reduced to about half
of the round-trip time. In addition, the synchronization
process will gradually reduce the discrepancy within a very
short period (about 0.45s). Figure 3(b) depicts the motion

0

20

40

60

80

100

120

0 2 4 6 8 10
0
20
40
60
80
100
120
140
160
180
200

0

20

40

60

80

100

120

0 2 4 6 8 10
0
20
40
60
80
100
120
140
160
180
200

0

20

40

60

80

100

120

0 2 4 6 8 10
0
20
40
60
80
100
120
140
160
180
200

0

20

40

60

80

100

120

0 2 4 6 8 10
0
20
40
60
80
100
120
140
160
180
200

0

20

40

60

80

100

120

0 2 4 6 8 10
0
20
40
60
80
100
120
140
160
180
200

0

20

40

60

80

100

120

0 2 4 6 8 10
0
20
40
60
80
100
120
140
160
180
200

0

20

40

60

80

100

120

0 2 4 6 8 10Time (sec)
M

ot
io

n
Ti

m
er

 D
iff

er
en

ce
 (m

s)
0
20
40
60
80
100
120
140
160
180
200

LAN

Local Connection

Overseas Connection

0

20

40

60

80

100

120

0 2 4 6 8 10
0
20
40
60
80
100
120
140
160
180
200

0

20

40

60

80

100

120

0 2 4 6 8 10
0
20
40
60
80
100
120
140
160
180
200

Linear Path Zig-Zag Path Circular Path

Se
rv

er
 -

Pl
ay

er
 A

Se
rv

er
 -

Pl
ay

er
 B

Pl
ay

er
 A

 -
Pl

ay
er

 B

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 3: Experimental results of our synchronization scheme.

timer difference between the server and player B, which is
interested in motion information of A. At 0.4s, when B
has just received the motion information of A from the
server, there is a large motion timer difference between B
and the server. Since there is no trivial way to correct the
discrepancy at this moment, the amount of discrepancy is
equal to the round-trip time. Finally, due to the double
round-trip delay between A and B, the discrepancy between
them is expected to be large at the beginning. However,
since A has started the gradual synchronization process
with the server earlier, the discrepancy between A and the
server would have been much reduced by the time when
B has received the motion command from A. Hence, the
discrepancy between A and B is reduced to about a single
round-trip time.

Figures 3(d-f) show the second set of results. Here, player
A moves in a zig-zag path by pressing different command
buttons alternatively to change the movement directions.
From the diagrams, we can see that whenever A issues a new
motion command, a discrepancy pulse appears. We can see
that the period from the start of a pulse to the start of the
next pulse, e.g., the period from 0.3s to 2.5s in Figure 3(d),
exhibits similar behavior as in the first set of the results.
This is because during each of these periods, the avatar of
A essentially moves in a straight line.

Figures 3(g-i) show the final set of results. Here, player
A moves in a circular path by pressing different command
buttons continuously. Overall, this set of results exhibits
similar behavior as the second set. In fact, both cases are
conceptually similar as they both require the player to con-
tinuously issue different motion commands in order for the
avatar to move according to the desired paths. The differ-
ence is that in this set of results, there are more discrepancy
pulses generated within the same period of time as it requires
the player to change the command buttons more frequently
in order for the avatar to move circularly.

Finally, we can see from the results that some small dis-
crepancy pulses occurs in most of the diagrams even after

our synchronization operations, e.g., the period from 0.5s to
2.5s in figure 3(d). This is because our method attempts to
correct the discrepancies based on estimating the network
latency from recent network communications. This estima-
tion would sometime cause small errors when the network
traffics fluctuate significantly.

In summary, we have presented in this paper a method to
provide a global-wise continuous synchronization for multi-
player online games. Experimental results demonstrate that
our method could provide good consistency control.

Acknowledgments
The work described in this paper was partially supported by a

CERG grant from the Research Grants Council of Hong Kong

(RGC Reference No.: CityU 1308/03E) and by a DAG grant

from City University of Hong Kong (Project No.: 7100264).

5. REFERENCES
[1] P. Bernstein and N. Goodman. Concurrency Control in

Distributed Database Systems. ACM Computing Surveys,
13(2):185–221, 1981.

[2] Y. Bernier. Latency Compensating Methods in Client/Server
In-game Protocol Design and Optimization. In Proc. the Game
Developers Conference, 2001.

[3] J. Chim, R. Lau, H. Leong, and A. Si. CyberWalk: A
Web-based Distributed Virtual Walkthrough Environment.
IEEE Trans. on Multimedia, 5(4):503–515, December 2003.

[4] DIS Steering Committee. IEEE Standard for Distributed
Interactive Simulation - Application Protocols, 1998. IEEE
Standard 1278.

[5] Final Fantasy XI. http://www.playonline.com/ff11/home/.

[6] L. Lamport. Time, Clocks, and the Ordering of Events in a
Distributed System. Communications of the ACM,
21(7):558–565, 1978.

[7] M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg. Local-lag and
Timewarp: Providing Consistency for Replicated Continuous
Applications. IEEE Trans. on Multimedia, 6(1):47–57, 2004.

[8] C. Sun and D. Chen. Consistency Maintenance in Real-Time
Collaborative Graphics Editing Systems. ACM Trans. on
Computer-Human Interaction, 9(1):1–41, 2002.

[9] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achieving
Convergence, Causality Preservation, and Intention Preservation
in Real-Time Cooperative Editing Systems. ACM Trans. on
Computer-Human Interaction, 5(1):63–108, 1998.

